The what, when, and how of teaching practices that evidence shows work best for student learning in mathematics.

John Hattie, Douglas Fisher, and Nancy Frey with Linda M. Gojak Sara Delano Moore and William Mellman
Grades: K–12
List Price: $36.95, Your Price: $29.95

Students pursue problems they’re curious about, not problems they’re told to solve.

Gerald Aungst
Grades: K-5
List Price: $29.95, Your Price: $23.95

See what’s going on in your students’ minds, plus get access to 340 rich tasks to use in instruction or assessment!

John SanGiovanni
Grades: K-2
List Price: $34.95, Your Price: $27.95

Grades: 3-5
List Price: $34.95, Your Price: $27.95

Check out our free Corwin Mathematics resources at www.corwin.com/free-corwin-mathematics-resources

NCTM Regional Conference & Expositions are an opportunity to share knowledge and learn with leaders in the field of mathematics education. Gain new strategies to unleash the mathematical mind of every student when you take advantage of superior mathematics resources right on your doorstep.

What you’ll get:
• Innovative ideas you can immediately put to use.
• Updates on classroom best practices from recognized innovators.
• In-depth discussion into the latest education resources.
• Knowledge-sharing with like-minded peers.
• Interaction with the latest tools and products in the robust exhibit hall.

Who should attend?
• Pk–12 classroom teachers
• Math coaches
• Administrators
• Math teacher educator
• Preservice teachers
• Math specialists

Join NCTM in either Phoenix or Philadelphia and discover the tools that will help you promote the mathematical habits of mind that will lead your students to college and career success.

Learn more at nctm.org/regionals and follow us on #NCTMregionals
Mission Statement: The National Council of Teachers of Mathematics is the public voice of mathematics education, supporting teachers to ensure equitable mathematics learning of the highest quality for all students through vision, leadership, professional development, and research.

Teaching Children Mathematics (TCM), an official journal of the National Council of Teachers of Mathematics (NCTM), supports the improvement of pre-K–grade 6 mathematics education by serving as a resource for teachers so as to provide more and better mathematics for all students. It is a forum for the exchange of mathematics ideas, activities, and pedagogical strategies, and for sharing and interpreting research. NCTM publications present a variety of viewpoints. The views expressed or implied in TCM, unless otherwise noted, should not be interpreted as official positions of NCTM. The appearance of advertising in NCTM’s publications and on its websites in no way implies endorsement or approval by NCTM of any advertising claims or of the advertiser, its product, or services. NCTM disclaims any liability whatsoever in connection with advertising appearing in NCTM’s publications and on its websites.

All correspondence should be addressed to Teaching Children Mathematics, 1906 Association Drive, Reston, VA 20191-1502. Prepare manuscripts according to the Chicago Manual of Style. No author identification should appear on the manuscript; the journal uses a blind-review process. To send submissions, access tcm.msubmit.net. Send letters to the editor to tcm@nctm.org.

Permission to photocopy material from Teaching Children Mathematics is granted to persons who wish to distribute items individually (not in combination with other articles or works), for educational purposes, in limited quantities, and free of charge or at cost; to librarians who wish to place a limited number of copies on reserve; to authors of scholarly papers; and to any party wishing to make one copy for personal use. Permission must be obtained to use journal material for course packets, commercial works, advertising, or professional development purposes. Use of journal material beyond those outlined above may violate U.S. copyright law and must be brought to the attention of the National Council of Teachers of Mathematics. For a complete statement of NCTM’s copyright policy, see www.nctm.org.

For information on **article photocopies or back issues**, contact Customer Care at (800) 235-7566.

The **index** for each volume appears online with the May issue. A cumulative index appears on the NCTM website, www.nctm.org. Teaching Children Mathematics is indexed in Academic Index, Biography Index, Contents Pages in Education, Current Index to Journals in Education, Education Index, Exceptional Child Education Resources, Literature Analysis of Microcomputer Publications, Media Review Digest, and Zentralblatt für Didaktik der Mathematik.

Information is available from the Headquarters Office regarding the three **other official journals**, the Mathematics Teacher, Mathematics Teaching in the Middle School, and the Journal for Research in Mathematics Education. Dues support development, coordination, and delivery of NCTM’s services. Dues for individual membership are $90 (U.S.) and include $39 for a Teaching Children Mathematics subscription. Each additional school journal (Mathematics Teacher and Mathematics Teaching in the Middle School) subscription is $39; an additional digital subscription is $27. Each additional print subscription to the **Journal for Research in Mathematics Education** is $66; an additional digital subscription is $54. **Foreign subscribers**, add $18 (U.S.) postage for each additional journal. Special rates for students, institutions, bulk subscribers, and emeritus members are available from the Headquarters Office.

Teaching Children Mathematics (ISSN 1073-5836) (IPM 112463) is published monthly except June and July, with a combined December/January issue, by the National Council of Teachers of Mathematics at 1906 Association Drive, Reston, VA 20191-1502. Periodicals postage is paid at Herndon, Virginia, and at additional mailing offices.

POSTMASTER: Send address changes to Teaching Children Mathematics, 1906 Association Drive, Reston, VA 20191-1502. Telephone: (703) 620-9840; orders: (800) 235-7566; fax: (703) 476-2970; email: nctm@nctm.org; World Wide Web: www.nctm.org.

Copyright © 2016, the National Council of Teachers of Mathematics, Inc. Printed in the U.S.A.
Establishing a mathematics whole-school agreement

KAREN S. KARP, SARAH B. BUSH, AND BARBARA J. DOUGHERTY

A whole-school agreement is one in which all educators in a school community agree that mathematics is better taught when everyone shares in consistent language, symbols and notation, models and schema, and rules that support developing learners. The idea behind this comprehensive agreement is not unlike a schoolwide behavior management policy—whereby children hear the same phrases, share identical expectations, and experience practices that are common and consistent year after year across classrooms and throughout the school. Having a similar common approach in mathematics reduces the need for reteaching and provides a level of familiarity. It also lessens students’ cognitive load and diminishes confusion while increasing students’ ability to “hit the ground running” each year in learning new mathematical content and processes.

This agreement requires buy-in from the school community—teachers, paraprofessionals, and administrators. Once the norms of the agreement are established, they should be communicated to parents and guardians so that they too can model the approaches that will best support their children. Through strategic professional development and full school commitment, the same language, symbols and notation, models and schema, and rules are shared across the grades and build on each other vertically.

Moving to this whole-school model, teachers must not only focus on their own grade-level standards but must also keep a broader goal in mind: How will students in the school be prepared to be successful as they move from grade to grade? All building administrators and supervisors of instruction should be leaders and advocates for the whole-school agreement.

Areas to consider
We suggest four main areas for consideration as you create your own whole-school agreement, after which we highlight several examples from each of the four areas.

1. Language
2. Symbols and notation
3. Models and schema
4. Rules

Language
Outdated and less conceptual mathematical language—for example, borrowing, carrying, and reducing fractions—could be replaced with more mathematically appropriate language, such as regrouping and simplifying fractions to lowest terms (Karp, Bush, and Dougherty 2014). The use of “cute” or “fun” language might
confuse students as they carry that terminology to subsequent grades. For example, the commutative property of addition might be referred to as the Ring around the Rosie property by students in early grades. Later, those students may notice a similar pattern in multiplication and refer to it again as the “Ring around the Rosie” property rather than the commutative property of multiplication. This is not a mathematically appropriate term. Agree to the language that will be used, then hold to it.

Symbols and notation

Fractions are symbolic representations that should be represented accurately and appropriately when they are initially introduced. When fractions are represented with a slanted fraction bar (3/8), we have noticed that elementary school students may confuse the diagonal bar as the number 1 and thereby read what they have written as 318. A more appropriate representation is a stacked fraction (3/8) so that the denominator is distinct. Essential schoolwide discussion should also emerge around the use of a symbol to represent an unknown. From early grades, an empty box or a question mark can be placed in the equation in the appropriate position. Later, those symbols can segue to a letter as a variable.

Models and schema

Students must be able to use multiple representations and connect those ideas from models to symbols to real-world situations. Such models as number lines or graphic schemas (see fig. 1) for interpreting the meaning of operations can be consistent across the grades. For each of these representational models that can be used for multiple grades with multiple ideas, decide on one and use it across all grades, building on the foundation as concepts become increasingly sophisticated.

Rules

Sharing rules in a particular grade may cause confusion later on as students move to number systems or concepts that are more complex. For example, being told, “When you multiply a number by ten, just put a zero at the end of the number,” would not go as planned for students working on 5.3 × 10; students would give 5.30 as the answer. For more information on thirteen of these rules that “expire” at the elementary school level, see Karp, Bush and, Dougherty (2014); and for twelve rules that “expire” at the middle school level, see Karp, Bush, and Dougherty (2015).

A unified, collaborative mathematics culture

A well-articulated and carefully aligned whole-school agreement supports students by keeping the language, symbols and notation, models and schema, and rules consistent or developing in a logical progression. This unified approach is particularly helpful for students who struggle, as it provides a recognizable component to new content. Additionally, all learners in a school can make connections among ideas in a unified and collaborative culture that promotes stronger learning in mathematics.
A math journal is one of the best ways to learn about your students’ thinking in math class. Journals help students reflect on their knowledge as well as organize their thoughts on paper, which is especially useful when ideas are too complex to keep in their heads. How you use math journals will depend on your purposes, preferences, and the particular age and needs of your students. Here are a few popular uses of math journals:

- Record notes and solve problems during daily lessons. As students work through daily explorations and activities, their notes will help them retrace their thinking for easy application to new situations.

- Reflect on learning at the end of a math exploration or lesson. Students can complete sentences, such as (a) What I know about ____ so far is ____ or (b) What I learned about ____ today is ____.

- Students can write about the part of the lesson that they enjoyed most, providing you with insight about the activities and strategies that motivate your students to learn.

- Respond to a “big idea” question that will be discussed during whole-class time. Students might respond to a prompt, such as, “What are some situations in which multiplication is used in real life?” After recording their own ideas on paper, they can share with a partner or with the entire class.

Reading students’ journal entries allows you to give valuable feedback to your students and provides crucial information for you. Think about these questions as you read:

- Is the mathematics correct and the terminology appropriate?

- Does the student include reasoning that supports the solution?

- What would you still like to know about the student’s thinking or response, even after evaluating the entry?

Although responding to all entries is not an efficient use of your time, an occasional remark or question would indicate to students that you value the time they invest in journal writing. When you do decide to give individual reactions, avoid such comments as “Good job” or “Nice thinking,” which do not offer a child authentic feedback. Instead, focus on the mathematics in the task and indicate your interest in how they think and reason, offering suggestions for further thinking.

Questions? Comments? Contact robyn@robynsilbey.com.